Квадратичное распределение — различия между версиями

Материал из Мегапедии
Перейти к: навигация, поиск
(начало)
(нет различий)

Версия 08:28, 5 мая 2023

Квадратичное распределение — это распределение непрерывной случайной величины на отрезке с квадратичной плотностью распределения вероятности. График плотности распределения вероятности является частью параболы, с положительными ординатами.

Обозначения

X — случайная величина;

fX(x) — дифференциальная функция распределения — функция плотности вероятности;

FX(x) — интегральная функция распределения — функция вероятности;

a — нижняя граница отрезка;

b — верхняя граница отрезка;

α, β, γ — коэффициенты параболы, γ>0;

M(X)средняя — математическое ожидание;

D(X)дисперсия;

σ(X)среднеквадратическое отклонение.

Функции распределения:

Дифференциальная функция

Формулы

КВА01.png

График

КВА31.png

Интегральная функция

Формулы

КВА02.png

График

КВА32.png

Характеристики:

КВА10.png

Вывод формул:

Математическое ожидание

КВА20.png

Дисперсия

КВА21.png

КВА22.png

Другие распределения:

Ссылки