СМО замкнутая с очередью — различия между версиями

Материал из Мегапедии
Перейти к: навигация, поиск
м
м
 
(не показаны 4 промежуточные версии этого же участника)
Строка 1: Строка 1:
 
[[файл:СМОnmnm.png|thumb|300|Замкнутая СМО с очередью]]
 
[[файл:СМОnmnm.png|thumb|300|Замкнутая СМО с очередью]]
'''[[СМО замкнутая без очереди|СМО замкнутая]]''' — это [[система массового обслуживания]], в которой есть фиксированное число источников заявок. Поток заявок каждого источника имеет одинаковую интенсивность.  
+
'''[[СМО замкнутая без очереди|Замкнутая СМО с очередью]]''' — это [[система массового обслуживания]], в которой есть фиксированное число источников заявок. Поток заявок каждого источника имеет одинаковую интенсивность.  
 
Первоначальный поток заявок имеет интенсивность большую в "число источников"-раз, чем поток заявок от одного источника. Каждое поступление заявки, снижает интенсивность входного потока на  интенсивность потока от одного источника. Если заявка приходит, в момент, когда все каналы свободны, то она немедленно поступает на обслуживание одним любым каналом. Если заявка приходит, в момент, когда свободен хотя бы один канал, то она немедленно поступает на обслуживание одним из свободных каналов. Если заявка приходит, в момент, когда все каналы заняты, то она становится в очередь и ожидает освобождения канала, который её может обслужить.
 
Первоначальный поток заявок имеет интенсивность большую в "число источников"-раз, чем поток заявок от одного источника. Каждое поступление заявки, снижает интенсивность входного потока на  интенсивность потока от одного источника. Если заявка приходит, в момент, когда все каналы свободны, то она немедленно поступает на обслуживание одним любым каналом. Если заявка приходит, в момент, когда свободен хотя бы один канал, то она немедленно поступает на обслуживание одним из свободных каналов. Если заявка приходит, в момент, когда все каналы заняты, то она становится в очередь и ожидает освобождения канала, который её может обслужить.
 
== Описание модели ==
 
== Описание модели ==
Строка 22: Строка 22:
 
== Граф состояний ==
 
== Граф состояний ==
 
<!--[[файл:СМО41.JPG]]-->
 
<!--[[файл:СМО41.JPG]]-->
'''М/М/n/m/n+m''' – Замкнутая СМО с очередью
+
'''М/М/n/m/n+m''' – Замкнутая СМО с очередью
  
 
[[файл:СМОnmnm.png]]
 
[[файл:СМОnmnm.png]]
 
[[файл:СМО41.JPG]]
 
  
 
Рассмотрим множество состояний системы:
 
Рассмотрим множество состояний системы:
Строка 77: Строка 75:
 
== Основные характеристики системы ==
 
== Основные характеристики системы ==
 
[[файл:СМО47.JPG]]
 
[[файл:СМО47.JPG]]
*Заметим, что при '''n=1''' СМО замкнутая становится [[Одноканальная СМО замкнутая|одноканальной]].
+
*Заметим, что при '''n=1''' СМО замкнутая становится [[Одноканальная СМО замкнутая с очередью|одноканальной]].
 
== [[Система массового обслуживания|Другие СМО:]] ==
 
== [[Система массового обслуживания|Другие СМО:]] ==
 
{{Список СМО}}
 
{{Список СМО}}
 
== Ссылки ==
 
== Ссылки ==
 
*Овчаров Л.А. Прикладные задачи теории массового обслуживания, М.,1969.  
 
*Овчаров Л.А. Прикладные задачи теории массового обслуживания, М.,1969.  
*[[Участник:Logic-samara]]
 
 
[[Категория:Математика]][[Категория:Случайные процессы]][[Категория:Логистика]]
 
[[Категория:Математика]][[Категория:Случайные процессы]][[Категория:Логистика]]

Текущая версия на 17:28, 14 августа 2025

Замкнутая СМО с очередью

Замкнутая СМО с очередью — это система массового обслуживания, в которой есть фиксированное число источников заявок. Поток заявок каждого источника имеет одинаковую интенсивность. Первоначальный поток заявок имеет интенсивность большую в "число источников"-раз, чем поток заявок от одного источника. Каждое поступление заявки, снижает интенсивность входного потока на интенсивность потока от одного источника. Если заявка приходит, в момент, когда все каналы свободны, то она немедленно поступает на обслуживание одним любым каналом. Если заявка приходит, в момент, когда свободен хотя бы один канал, то она немедленно поступает на обслуживание одним из свободных каналов. Если заявка приходит, в момент, когда все каналы заняты, то она становится в очередь и ожидает освобождения канала, который её может обслужить.

Описание модели

На вход n-канальной СМО с m-очередью поступает поток заявок от (n+m)-источников, причём каждый источник заявок даёт простейший поток заявок с интенсивностью λ.

Интенсивность простейшего потока обслуживания каждого канала μ.

Если заявка застаёт все каналы свободными, то она принимается на обслуживание и обслуживается одним из n каналов.

После окончания обслуживания один канал освобождается.

Если вновь прибывшая заявка застаёт в системе свободным хотя бы один канал, то она принимается на обслуживание одним из свободных каналов и обслуживается до конца.

Если заявка застаёт все каналы занятыми, то она становится в очередь и «терпеливо» ждёт своего обслуживания.

Дисциплина очереди естественная: кто раньше пришёл, тот раньше и обслуживается. Максимальное число мест в очереди m.

Каждое поступление заявки, снижает интенсивность входного потока на поток от одного источника.

Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе.

Граф состояний

М/М/n/m/n+m – Замкнутая СМО с очередью

СМОnmnm.png

Рассмотрим множество состояний системы:

S0 – в системе нет ни одной заявки, все каналы свободны;

S1 – в системе имеется одна заявка, она обслуживается одним каналом;

S2 – в системе имеется две заявки, они обслуживаются двумя каналами;

;

Sk – в системе имеется k-заявок, они обслуживаются k-каналами;

;

Sn – в системе имеется n-заявок, они обслуживаются n-каналами, очереди нет;

Sn+1 – в системе имеется (n+1)-заявок, n из них обслуживаются n-каналами, а одна заявка ожидает в очереди;

;

Sn+r – в системе имеется (n+r)-заявок, n из них обслуживаются n-каналами, а r-заявок ожидают в очереди;

;

Sn+m – в системе имеется (n+m)-заявок, n из них обслуживаются n-каналами, а m-заявок ожидают в очереди;

Система дифференциальных уравнений

Система дифференциальных уравнений, описывающих поведение системы, имеет вид:

СМО42.JPG

Рассмотрим стационарный режим работы системы (при t→∞).

Система уравнений принимает вид:

СМО43.JPG

Суммируя в системе уравнения с первого до i-го (i=1,n+m), получаем упрощённый вид системы.

Решим систему относительно p0,p1,…,pn+m.

СМО44.JPG

СМО45.JPG

В результате получаем решение системы:

СМО46.JPG

Основные характеристики системы

СМО47.JPG

Другие СМО:

Ссылки

  • Овчаров Л.А. Прикладные задачи теории массового обслуживания, М.,1969.