СМО с бесконечной очередью — различия между версиями
м |
м |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 24: | Строка 24: | ||
[[файл:СМОn8.png]] | [[файл:СМОn8.png]] | ||
− | |||
− | |||
Рассмотрим множество состояний системы: | Рассмотрим множество состояний системы: | ||
Строка 84: | Строка 82: | ||
== Ссылки == | == Ссылки == | ||
*Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969. | *Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969. | ||
− | |||
[[Категория:Математика]][[Категория:Случайные процессы]][[Категория:Логистика]] | [[Категория:Математика]][[Категория:Случайные процессы]][[Категория:Логистика]] |
Текущая версия на 16:40, 14 августа 2025
СМО с бесконечной очередью — это система массового обслуживания, в которой всегда есть места в очереди и если заявка приходит, в момент, когда все каналы заняты, то она не получает немедленно отказа, а может стать в очередь и ожидать освобождения канала, который её может обслужить.
Содержание
Описание модели
На вход n-канальной СМО с бесконечной очередью поступает простейший поток заявок с интенсивностью λ.
Интенсивность простейшего потока обслуживания каждого канала μ.
Если заявка застаёт все каналы свободными, то она принимается на обслуживание и обслуживается одним из n каналов.
После окончания обслуживания один канал освобождается.
Если вновь прибывшая заявка застаёт в системе свободным хотя бы один канал, то она принимается на обслуживание одним из свободных каналов и обслуживается до конца.
Если заявка застаёт все каналы занятыми, то она становится в очередь и «терпеливо» ждёт своего обслуживания.
Дисциплина очереди естественная: кто раньше пришёл, тот раньше и обслуживается.
Число мест в очереди не ограничено.
Состояние рассмотренной системы будем связывать с числом заявок, находящихся в системе.
Граф состояний
М/М/n/∞ – СМО с бесконечной очередью
Рассмотрим множество состояний системы:
S0 – в системе нет ни одной заявки, все каналы свободны;
S1 – в системе имеется одна заявка, она обслуживается одним каналом;
S2 – в системе имеется две заявки, они обслуживаются двумя каналами;
…;
Sk – в системе имеется k-заявок, они обслуживаются k-каналами;
…;
Sn – в системе имеется n-заявок, они обслуживаются n-каналами, очереди нет;
Sn+1 – в системе имеется (n+1)-заявок, n из них обслуживаются n-каналами, а одна заявка ожидает в очереди;
…;
Sn+r – в системе имеется (n+r)-заявок, n из них обслуживаются n-каналами, а r-заявок ожидают в очереди;
Sn+r+1 – в системе имеется (n+r+1)-заявок, n из них обслуживаются n-каналами, а (r+1)-заявок ожидают в очереди;
….
Система дифференциальных уравнений
Система дифференциальных уравнений, описывающих поведение системы, имеет вид:
Рассмотрим стационарный режим работы системы (при t→∞).
Система уравнений принимает вид:
Суммируя в системе уравнения с первого до i-го (i=1,∞), получаем упрощённый вид системы.
Решим систему относительно p0,p1,…, pn, pn,pn+1,…,pn+r,….
В результате получаем решение системы:
Основные характеристики системы
При χ<1 получаем
- Заметим, что при n=1 СМО с бесконечной очередью становится одноканальной.
Другие СМО:
Ссылки
- Овчаров Л.А. Прикладные задачи теории массового обслуживания, «Машиностроение», М.,1969.